0%

(CVPR 2016) Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network

Keyword [ESPCN] [Pixel Shuffle] [Optical Flow] [FlowNet]

Shi W, Caballero J, Huszár F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 1874-1883.



1. Overview


在此前的工作中,首先将low resolution (LR)图像upscale(bicubic插值)到high resolution (HR)空间。然后,输入到神经网络中。然而,这种方法的计算复杂度很大。

论文提出ESPCN结构(efficient sub-pixel convolutional neural network)




  • 降低计算复杂度与速度.
    输入为LR空间图像(3 x h x w),网络结构中最后一层Conv层为efficient sub-pixel convolution layer (输出维度为3rr x h x w).最后进行rearrange(3 x rh x rw)成HR空间


  • Pipeline
    不需使用bicubic

  • 提高准确度



1.1. 效果

  • Real-time SR of 1080p videos on single K2 GPU
  • r*r times faster
  • Perform better (+0.15dB on Images, +0.39dB on Videos)


1.2. SR Problem

  • ill-posed problem
  • multiple solutions (one-to-many mapping).
  • key assumption. Much of the high-frequency data(边缘) is redundant and thus can be accurately reconstructed from low frequency components
  • Edge-based
  • Image statistics-based
  • Patch-based
  • Sparsity-based (sparse coding). dictionary (prior) discover correspondence between LR and HR. Computation expensive
  • Random forest
  • Auto-encoder
  • SRCNN

1.4. Dataset

1.4.1. Image

  • Timofte (widely used by SISR paper)
    91张训练图片,2个测试集(Set5, Set14分别包含5张、14张图片).
  • Berkeley segmentation dataset (BSD300, BSD500)
  • Super texture dataset
    136张texture图片.
  • ImageNet
    机选取5000张.

1.4.2. Video

  • Xiph
    8 1920x1080 videos, length ≈10s.
  • Ultra Video Group
    7 1920x1080 videos, length 5s.

1.5. Future Work

  • Neighbouring video frames
  • Spatial-temporal network



2. Experiments


2.1. 网络结构

实验中的ESPCN结构:

  • Input (b, 3, h, w)
  • Conv_1 (5x5, 64, 1s) –> (b, 64, h, w)
  • Conv_2 (3x3, 32, 1s) –> (b, 32, h, w)
  • Conv_3 (3x3, rr, 1s) –> (b, 3r*r, h, w)
  • PixelShuffle (r) –> (b, 3, rh, rw)
    模型使用tanh,实验中与relu进行比较。

2.2. Loss Function

MSE.

2.3. 评价指标

PSNR of luminance in YCbCr.

2.4. 实验结果